A direct mass-action mechanism explains capacitative calcium entry in Jurkat and skeletal L6 muscle cells.
نویسندگان
چکیده
We examined capacitative calcium entry (CCE) in Jurkat and in L6 skeletal muscle cells. We found that extracellular Ca2+ can enter the endoplasmic reticulum (ER) of both cell types even in the presence of thapsigargin, which blocks entry into the ER from the cytosol through the CaATPase. Moreover, extracellular Ca2+ entry into the ER was evident even when intracellular flow of Ca2+ was in the direction of ER to cytosol due to the presence of caffeine. ER Ca2+ content was assessed by two separate means. First, we used the Mag-Fura fluorescent dye, which is sensitive only to the relatively high concentrations of Ca2+ found in the ER. Second, we transiently expressed an ER-targeted derivative of aequorin, which reports Ca2+ by luminescence. In both cases, the Ca2+ concentration in the ER increased in response to extracellular Ca2+ after the ER had been previously depleted despite blockade by thapsigargin. We found two differences between the Jurkat and L6 cells. L6, but not Jurkat cells, inhibited Ca2+ uptake at very high Ca2+ concentrations. Second, ryanodine receptor blockers inhibited the appearance of cytosolic Ca2+ during CCE if added before Ca2+ in both cases, but the L6 cells were much more sensitive to ryanodine. Both of these can be explained by the known difference in ryanodine receptors between these cell types. These findings imply that the origin of cytosolic Ca2+ during CCE is the ER. Furthermore, kinetic data demonstrated that Ca2+ filled the ER before the cytosol during CCE. Our results suggest a plasma membrane Ca2+ channel and an ER Ca2+ channel joined in tandem, allowing Ca2+ to flow directly from the extracellular space to the ER. This explains CCE; any decrease in ER [Ca2+] relative to extracellular [Ca2+] would provide the gradient for refilling the ER through a mass-action mechanism.
منابع مشابه
Mutual antagonism of calcium entry by capacitative and arachidonic acid-mediated calcium entry pathways.
In nonexcitable cells, the predominant mechanism for regulated entry of Ca(2+) is capacitative calcium entry, whereby depletion of intracellular Ca(2+) stores signals the activation of plasma membrane calcium channels. A number of other regulated Ca(2+) entry pathways occur in specific cell types, however, and it is not know to what degree the different pathways interact when present in the sam...
متن کاملJunctional membrane structure and store operated calcium entry in muscle cells.
The store-operated Ca2+ channel (SOC) located on the plasma membrane (PM) mediates capacitative entry of extracellular Ca2+ following depletion of intracellular Ca2+ stores in the endoplasmic or sarcoplasmic reticulum (ER/SR). It plays important roles in a variety of cell signaling processes, including proliferation, apoptosis, gene regulation and motility. In skeletal muscle, the L-type Ca2+ c...
متن کاملMobilization of calcium from intracellular stores, potentiation of neurotransmitter-induced calcium transients, and capacitative calcium entry by 4-aminopyridine.
In this study we analyzed the effect of 4-aminopyridine (4-AP) on free cytosolic calcium concentration ([Ca(2+)](i)) in basal conditions, after stimulation with neurotransmitters, and during capacitative calcium entry. Using fura-2 ratiometric calcium imaging, we found that 4-AP increased [Ca(2+)](i) in type I astrocytes, neurons, and in skeletal muscle cells. The [Ca(2+)](i) elevation induced ...
متن کاملβ-Adrenergic Inhibition of Contractility in L6 Skeletal Muscle Cells
The β-adrenoceptors (β-ARs) control many cellular processes. Here, we show that β-ARs inhibit calcium depletion-induced cell contractility and subsequent cell detachment of L6 skeletal muscle cells. The mechanism underlying the cell detachment inhibition was studied by using a quantitative cell detachment assay. We demonstrate that cell detachment induced by depletion of extracellular calcium i...
متن کاملTarget-Cell Contact Activates a Highly Selective Capacitative Calcium Entry Pathway in Cytotoxic T Lymphocytes
Calcium influx is critical for T cell activation. Evidence has been presented that T cell receptor-stimulated calcium influx in helper T lymphocytes occurs via channels activated as a consequence of depletion of intracellular calcium stores, a mechanism known as capacitative Ca(2+) entry (CCE). However, two key questions have not been addressed. First, the mechanism of calcium influx in cytotox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 45 شماره
صفحات -
تاریخ انتشار 2003